Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Intervalo de año de publicación
1.
Chem Biol Interact ; 394: 110986, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38583853

RESUMEN

Snake venom metalloproteases (SVMPs) are hydrolytic enzymes dependent on metal binding, primarily zinc (Zn2+), at their catalytic site. They are classified into three classes (P-I to P-III). BjussuMP-II, a P-I SVMP isolated from Bothrops jararacussu snake venom, has a molecular mass of 24 kDa. It exhibits inhibitory activity on platelet aggregation and hydrolyzes fibrinogen. TNF-α upregulates the expression of adhesion molecules on endothelial cell surfaces, promoting leukocyte adhesion and migration during inflammation. Literature indicates that SVMPs may cleave the TNF-α precursor, possibly due to significant homology between metalloproteases from mammalian extracellular matrix and SVMPs. This study aimed to investigate BjussuMP-II's effects on human umbilical vein endothelial cells (HUVEC), focusing on viability, detachment, adhesion, release, and cleavage of TNF-α, IL-1ß, IL-6, IL-8, and IL-10. HUVEC were incubated with BjussuMP-II (1.5-50 µg/mL) for 3-24 h. Viability was determined using LDH release, MTT metabolization, and 7AAD for membrane integrity. Adhesion and detachment were assessed by incubating cells with BjussuMP-II and staining with Giemsa. Cytokines were quantified in HUVEC supernatants using EIA. TNF-α cleavage was evaluated using supernatants from PMA-stimulated cells or recombinant TNF-α. Results demonstrated BjussuMP-II's proteolytic activity on casein. It was not toxic to HUVEC at any concentration or duration studied but interfered with adhesion and promoted detachment. PMA induced TNF-α release by HUVEC, but this effect was not observed with BjussuMP-II, which cleaved TNF-α. Additionally, BjussuMP-II cleaved IL-1ß, IL-6, and IL-10. These findings suggest that the zinc metalloprotease BjussuMP-II could be a valuable biotechnological tool for treating inflammatory disorders involving cytokine deregulation.

2.
Int J Biol Macromol ; 238: 124357, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37028634

RESUMEN

Animal venoms and their chemical compounds have aroused both empirical and scientific attention for ages. However, there has been a significant increase in scientific investigations in recent decades, allowing the production of various formulations that are helping in the development of many important tools for biotechnological, diagnostic, or therapeutic use, both in human and animal health, as well as in plants. Venoms are composed of biomolecules and inorganic compounds that may have physiological and pharmacological activities that are not related to their principal actions (prey immobilization, digestion, and defense). Snake venom toxins, mainly enzymatic and non-enzymatic proteins, and peptides have been identified as potential prototypes for new drugs and/or models for the development of pharmacologically active structural domains for the treatment of cancer, cardiovascular diseases, neurodegenerative and autoimmune diseases, pain, and infectious-parasitic diseases. This minireview aims to provide an overview of the biotechnological potential of animal venoms, with a focus on snakes, and to introduce the reader to the fascinating world of Applied Toxinology, where animal biodiversity can be used to develop therapeutic and diagnostic applications for humans.


Asunto(s)
Neoplasias , Venenos de Serpiente , Animales , Humanos , Venenos de Serpiente/química , Serpientes/metabolismo , Proteínas/química , Péptidos/farmacología , Neoplasias/tratamiento farmacológico
3.
Amino Acids ; 53(10): 1635-1648, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34482475

RESUMEN

The worrisome emergence of pathogens resistant to conventional drugs has stimulated the search for new classes of antimicrobial and antiparasitic agents from natural sources. Antimicrobial peptides (AMPs), acting through mechanisms that do not rely on the interaction with a specific receptor, provide new possibilities for the development of drugs against resistant organisms. This study sought to purify and proteomically characterize the antimicrobial and antiparasitic peptidomes of B. atrox and B. jararacussu snake venoms against Gram-positive (Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus-MRSA), Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) bacteria, and the protozoan parasites Leishmania amazonensis and Plasmodium falciparum (clone W2, resistant to chloroquine). To this end, B. atrox and B. jararacussu venom peptides were purified by combination of 3 kDa cut-off Amicon® ultracentrifugal filters and reverse-phase high-performance liquid chromatography, and then identified by electrospray-ionization Ion-Trap/Time-of-Flight mass spectrometry. Fourteen distinct peptides, with masses ranging from 443.17 to 1383.73 Da and primary structure between 3 and 13 amino acid residues, were sequenced. Among them, 13 contained unique sequences, including 4 novel bradykinin-potentiating-like peptides (BPPs), and a snake venom metalloproteinase tripeptide inhibitor (SVMPi). Although commonly found in Viperidae venoms, except for Bax-12, the BPPs and SVMPi here reported had not been described in B. atrox and B. jararacussu venoms. Among the novel peptides, some exhibited bactericidal activity towards P. aeruginosa and S. aureus, had low hemolytic effect, and were devoid of antiparasitic activity. The identified novel antimicrobial peptides may be relevant in the development of new drugs for the management of multidrug-resistant Gram-negative and Gram-positive bacteria.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Venenos de Crotálidos/química , Péptidos/farmacología , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antimaláricos/química , Antimaláricos/farmacología , Bothrops , Venenos de Crotálidos/aislamiento & purificación , Hemolíticos/química , Hemolíticos/farmacología , Humanos , Leishmania/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Péptidos/química , Péptidos/aislamiento & purificación , Plasmodium falciparum/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Espectrometría de Masa por Ionización de Electrospray , Staphylococcus aureus/efectos de los fármacos
4.
Amino Acids, v. 53, p. 1635–1648, out. 2021
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3939

RESUMEN

The worrisome emergence of pathogens resistant to conventional drugs has stimulated the search for new classes of antimicrobial and antiparasitic agents from natural sources. Antimicrobial peptides (AMPs), acting through mechanisms that do not rely on the interaction with a specific receptor, provide new possibilities for the development of drugs against resistant organisms. This study sought to purify and proteomically characterize the antimicrobial and antiparasitic peptidomes of B. atrox and B. jararacussu snake venoms against Gram-positive (Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus—MRSA), Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) bacteria, and the protozoan parasites Leishmania amazonensis and Plasmodium falciparum (clone W2, resistant to chloroquine). To this end, B. atrox and B. jararacussu venom peptides were purified by combination of 3 kDa cut-off Amicon® ultracentrifugal filters and reverse-phase high-performance liquid chromatography, and then identified by electrospray-ionization Ion-Trap/Time-of-Flight mass spectrometry. Fourteen distinct peptides, with masses ranging from 443.17 to 1383.73 Da and primary structure between 3 and 13 amino acid residues, were sequenced. Among them, 13 contained unique sequences, including 4 novel bradykinin-potentiating-like peptides (BPPs), and a snake venom metalloproteinase tripeptide inhibitor (SVMPi). Although commonly found in Viperidae venoms, except for Bax-12, the BPPs and SVMPi here reported had not been described in B. atrox and B. jararacussu venoms. Among the novel peptides, some exhibited bactericidal activity towards P. aeruginosa and S. aureus, had low hemolytic effect, and were devoid of antiparasitic activity. The identified novel antimicrobial peptides may be relevant in the development of new drugs for the management of multidrug-resistant Gram-negative and Gram-positive bacteria.

5.
Toxicon X ; 7: 100053, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32793880

RESUMEN

Snakes of the genus Lachesis, commonly known as bushmasters, are the largest venomous snakes in the Americas. Because these snakes have their habitats in areas of remote forests they are difficult to find, and consequently there are few studies of Lachesis taxa in their natural ecosystems. Bushmasters are distributed in tropical forest areas of South and Central America. In Brazil they can be found in the Amazon Rainforest and the Atlantic Forest. Despite the low incidence of cases, laquetic envenoming causes severe permanent sequelae due to the high amount of inoculated venom. These accidents are characterized by local pain, hemorrhage and myonecrosis that can be confused with bothropic envenomings. However, victims of Lachesis bites develop symptoms characteristic of Lachesis envenoming, known as vagal syndrome. An important message of this bibliographic synthesis exercise is that, despite having the proteomic profiles of all the taxa of the genus available, very few structure-function correlation studies have been carried out. Therefore the motivation for this review was to fill a gap in the literature on the genus Lachesis, about which there is no recent review. Here we discuss data scattered in a number of original articles published in specialized journals, spanning the evolutionary history and extant phylogeographic distribution of the bushmasters, their venom composition and diet, as well as the pathophysiology of their bites to humans and the biological activities and possible biotechnological applicability of their venom toxins.

6.
Artículo en Inglés | MEDLINE | ID: mdl-32362928

RESUMEN

BACKGROUND: The Brazil's lancehead, Bothrops brazili, is a poorly studied pit viper distributed in lowlands of the equatorial rainforests of southern Colombia, northeastern Peru, eastern Ecuador, southern and southeastern Venezuela, Guyana, Suriname, French Guiana, Brazil, and northern Bolivia. Few studies have been reported on toxins isolated from venom of Ecuadorian and Brazilian B. brazili. The aim of the present study was to elucidate the qualitative and quantitative protein composition of B. brazili venom from Pará (Brazil), and to carry out a comparative antivenomics assessment of the immunoreactivity of the Brazilian antibothropic pentavalent antivenom [soro antibotrópico (SAB) in Portuguese] against the venoms of B. brazili and reference species, B. jararaca. METHODS: We have applied a quantitative snake venomics approach, including reverse-phase and two-dimensional electrophoretic decomplexation of the venom toxin arsenal, LC-ESI-MS mass profiling and peptide-centric MS/MS proteomic analysis, to unveil the overall protein composition of B. brazili venom from Pará (Brazil). Using third-generation antivenomics, the specific and paraspecific immunoreactivity of the Brazilian SAB against homologous (B. jararaca) and heterologous (B. brazili) venoms was investigated. RESULTS: The venom proteome of the Brazil's lancehead (Pará) is predominantly composed of two major and three minor acidic (19%) and two major and five minor basic (14%) phospholipase A2 molecules; 7-11 snake venom metalloproteinases of classes PI (21%) and PIII (6%); 10-12 serine proteinases (14%), and 1-2 L-amino acid oxidases (6%). Other toxins, including two cysteine-rich secretory proteins, one C-type lectin-like molecule, one nerve growth factor, one 5'-nucleotidase, one phosphodiesterase, one phospholipase B, and one glutaminyl cyclase molecule, represent together less than 2.7% of the venom proteome. Third generation antivenomics profile of the Brazilian pentabothropic antivenom showed paraspecific immunoreactivity against all the toxin classes of B. brazili venom, with maximal binding capacity of 132.2 mg venom/g antivenom. This figure indicates that 19% of antivenom's F(ab')2 antibodies bind B. brazili venom toxins. CONCLUSION: The proteomics outcome contribute to a deeper insight into the spectrum of toxins present in the venom of the Brazil's lancehead, and rationalize the pathophysiology underlying this snake bite envenomings. The comparative qualitative and quantitative immunorecognition profile of the Brazilian pentabothropic antivenom toward the venom toxins of B. brazili and B. jararaca (the reference venom for assessing the bothropic antivenom's potency in Brazil), provides clues about the proper use of the Brazilian antibothropic polyvalent antivenom in the treatment of bites by the Brazil's lancehead.

7.
J. venom. anim. toxins incl. trop. dis ; 26: e20190103, 2020. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1101265

RESUMEN

The Brazil's lancehead, Bothrops brazili, is a poorly studied pit viper distributed in lowlands of the equatorial rainforests of southern Colombia, northeastern Peru, eastern Ecuador, southern and southeastern Venezuela, Guyana, Suriname, French Guiana, Brazil, and northern Bolivia. Few studies have been reported on toxins isolated from venom of Ecuadorian and Brazilian B. brazili. The aim of the present study was to elucidate the qualitative and quantitative protein composition of B. brazili venom from Pará (Brazil), and to carry out a comparative antivenomics assessment of the immunoreactivity of the Brazilian antibothropic pentavalent antivenom [soro antibotrópico (SAB) in Portuguese] against the venoms of B. brazili and reference species, B. jararaca. Methods: We have applied a quantitative snake venomics approach, including reverse-phase and two-dimensional electrophoretic decomplexation of the venom toxin arsenal, LC-ESI-MS mass profiling and peptide-centric MS/MS proteomic analysis, to unveil the overall protein composition of B. brazili venom from Pará (Brazil). Using third-generation antivenomics, the specific and paraspecific immunoreactivity of the Brazilian SAB against homologous (B. jararaca) and heterologous (B. brazili) venoms was investigated. Results: The venom proteome of the Brazil's lancehead (Pará) is predominantly composed of two major and three minor acidic (19%) and two major and five minor basic (14%) phospholipase A2 molecules; 7-11 snake venom metalloproteinases of classes PI (21%) and PIII (6%); 10-12 serine proteinases (14%), and 1-2 L-amino acid oxidases (6%). Other toxins, including two cysteine-rich secretory proteins, one C-type lectin-like molecule, one nerve growth factor, one 5'-nucleotidase, one phosphodiesterase, one phospholipase B, and one glutaminyl cyclase molecule, represent together less than 2.7% of the venom proteome. Third generation antivenomics profile of the Brazilian pentabothropic antivenom showed paraspecific immunoreactivity against all the toxin classes of B. brazili venom, with maximal binding capacity of 132.2 mg venom/g antivenom. This figure indicates that 19% of antivenom's F(ab')2 antibodies bind B. brazili venom toxins. Conclusion: The proteomics outcome contribute to a deeper insight into the spectrum of toxins present in the venom of the Brazil's lancehead, and rationalize the pathophysiology underlying this snake bite envenomings. The comparative qualitative and quantitative immunorecognition profile of the Brazilian pentabothropic antivenom toward the venom toxins of B. brazili and B. jararaca (the reference venom for assessing the bothropic antivenom's potency in Brazil), provides clues about the proper use of the Brazilian antibothropic polyvalent antivenom in the treatment of bites by the Brazil's lancehead.(AU)


Asunto(s)
Animales , Oxidorreductasas , Mordeduras de Serpientes , Venenos de Serpiente , Mordeduras y Picaduras , Antivenenos , Bothrops , Proteoma
8.
Artículo en Inglés | MEDLINE | ID: mdl-30181737

RESUMEN

BACKGROUND: Cnidarians produce toxins, which are composed of different polypeptides that induce pharmacological effects of biotechnological interest, such as antitumor, antiophidic and anti-clotting activities. This study aimed to evaluate toxicological activities and potential as antitumor and antiophidic agents contained in total extracts from five cnidarians: Millepora alcicornis, Stichodactyla helianthus, Plexaura homomalla, Bartholomea annulata and Condylactis gigantea (total and body wall). METHODS: The cnidarian extracts were evaluated by electrophoresis and for their phospholipase, proteolytic, hemorrhagic, coagulant, fibrinogenolytic, neuromuscular blocking, muscle-damaging, edema-inducing and cytotoxic activities. RESULTS: All cnidarian extracts showed indirect hemolytic activity, but only S. helianthus induced direct hemolysis and neurotoxic effect. However, the hydrolysis of NBD-PC, a PLA2 substrate, was presented only by the C. gigantea (body wall) and S. helianthus. The extracts from P. homomalla and S. helianthus induced edema, while only C. gigantea and S. helianthus showed intensified myotoxic activity. The proteolytic activity upon casein and fibrinogen was presented mainly by B. annulata extract and all were unable to induce hemorrhage or fibrinogen coagulation. Cnidarian extracts were able to neutralize clotting induced by Bothrops jararacussu snake venom, except M. alcicornis. All cnidarian extracts were able to inhibit hemorrhagic activity induced by Bothrops moojeni venom. Only the C. gigantea (body wall) inhibited thrombin-induced coagulation. All cnidarian extracts showed antitumor effect against Jurkat cells, of which C. gigantea (body wall) and S. helianthus were the most active; however, only C. gigantea (body wall) and M. alcicornis were active against B16F10 cells. CONCLUSION: The cnidarian extracts analyzed showed relevant in vitro inhibitory potential over the activities induced by Bothrops venoms; these results may contribute to elucidate the possible mechanisms of interaction between cnidarian extracts and snake venoms.

9.
Artículo en Inglés | MEDLINE | ID: mdl-29467796

RESUMEN

BACKGROUND: Wasp venoms constitute a molecular reservoir of new pharmacological substances such as peptides and proteins, biological property holders, many of which are yet to be identified. Exploring these sources may lead to the discovery of molecules hitherto unknown. This study describes, for the first time in hymenopteran venoms, the identification of an enzymatically inactive phospholipase A2 (PLA2) from the venom of the social wasp Polybia occidentalis. METHODS: P. occidentalis venom was fractioned by molecular exclusion and reverse phase chromatography. For the biochemical characterization of the protein, 1D and 2D SDS-PAGE were performed, along with phospholipase activity assays on synthetic substrates, MALDI-TOF mass spectrometry and sequencing by Edman degradation. RESULTS: The protein, called PocTX, was isolated using two chromatographic steps. Based on the phospholipase activity assay, electrophoresis and mass spectrometry, the protein presented a high degree of purity, with a mass of 13,896.47 Da and a basic pI. After sequencing by the Edman degradation method, it was found that the protein showed a high identity with snake venom PLA2 homologues. CONCLUSION: This is the first report of an enzymatically inactive PLA2 isolated from wasp venom, similar to snake PLA2 homologues.

10.
Basic Clin Pharmacol Toxicol ; 122(4): 413-423, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29067765

RESUMEN

Snake venom phospholipases A2 (PLA2 s) are responsible for numerous pathophysiological effects in snakebites; however, their biochemical properties favour antimicrobial actions against different pathogens, thus constituting a true source of potential microbicidal agents. This study describes the isolation of a Lys49 PLA2 homologue from Lachesis muta muta venom using two chromatographic steps: size exclusion and reverse phase. The protein showed a molecular mass of 13,889 Da and was devoid of phospholipase activity on an artificial substrate. The primary structure made it possible to identify an unpublished protein from L. m. muta venom, named LmutTX, that presented high identity with other Lys49 PLA2 s from bothropic venoms. Synthetic peptides designed from LmutTX were evaluated for their cytotoxic and antimicrobial activities. LmutTX was cytotoxic against C2C12 myotubes at concentrations of at least 200 µg/mL, whereas the peptides showed a low cytolytic effect. LmutTX showed antibacterial activity against Gram-positive and Gram-negative bacteria; however, S. aureusATCC 29213 and MRSA strains were more sensitive to the toxin's action. Synthetic peptides were tested on S. aureus, MRSA and P. aeruginosaATCC 27853 strains, showing promising results. This study describes for the first time the isolation of a Lys49 PLA2 from Lachesis snake venom and shows that peptides from specific regions of the sequence may constitute new sources of molecules with biotechnological potential.


Asunto(s)
Antibacterianos/farmacología , Venenos de Crotálidos/enzimología , Fosfolipasas A2/química , Viperidae , Animales , Antibacterianos/síntesis química , Cromatografía en Gel/métodos , Cromatografía de Fase Inversa/métodos , Venenos de Crotálidos/química , Diseño de Fármacos , Pruebas de Enzimas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Péptidos/síntesis química , Péptidos/farmacología , Fosfolipasas A2/aislamiento & purificación , Pseudomonas aeruginosa/efectos de los fármacos
11.
J. venom. anim. toxins incl. trop. dis ; 24: 1-6, 2018. ilus, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1484738

RESUMEN

Background: Wasp venoms constitute a molecular reservoir of new pharmacological substances such as peptides and proteins, biological property holders, many of which are yet to be identified. Exploring these sources may lead to the discovery of molecules hitherto unknown. This study describes, for the first time in hymenopteran venoms, the identification of an enzymatically inactive phospholipase A2 (PLA2) from the venom of the social wasp Polybia occidentalis. Methods: P. occidentalis venom was fractioned by molecular exclusion and reverse phase chromatography. For the biochemical characterization of the protein, 1D and 2D SDS-PAGE were performed, along with phospholipase activity assays on synthetic substrates, MALDI-TOF mass spectrometry and sequencing by Edman degradation. Results: The protein, called PocTX, was isolated using two chromatographic steps. Based on the phospholipase activity assay, electrophoresis and mass spectrometry, the protein presented a high degree of purity, with a mass of 13,896. 47 Da and a basic pI. After sequencing by the Edman degradation method, it was found that the protein showed a high identity with snake venom PLA2 homologues. Conclusion: This is the first report of an enzymatically inactive PLA2 isolated from wasp venom, similar to snake PLA2 homologues.


Asunto(s)
Animales , /aislamiento & purificación , /química , Venenos de Avispas , Avispas/enzimología
12.
J. venom. anim. toxins incl. trop. dis ; 24: 1-11, 2018. ilus, tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1484757

RESUMEN

Background: Cnidarians produce toxins, which are composed of different polypeptides that induce pharmacological effects of biotechnological interest, such as antitumor, antiophidic and anti-clotting activities. This study aimed to evaluate toxicological activities and potential as antitumor and antiophidic agents contained in total extracts from five cnidarians: Millepora alcicornis, Stichodactyla helianthus, Plexaura homomalla, Bartholomea annulata and Condylactis gigantea (total and body wall). Methods: The cnidarian extracts were evaluated by electrophoresis and for their phospholipase, proteolytic, hemorrhagic, coagulant, fibrinogenolytic, neuromuscular blocking, muscle-damaging, edema-inducing and cytotoxic activities. Results: All cnidarian extracts showed indirect hemolytic activity, but only S. helianthus induced direct hemolysis and neurotoxic effect. However, the hydrolysis of NBD-PC, a PLA2 substrate, was presented only by the C gigantea (body wall) and S. helianthus. The extracts from P. homomalla and S. helianthus induced edema, while only C gigantea and S. helianthus showed intensified myotoxic activity. The proteolytic activity upon casein and fibrinogen was presented mainly by B. annulata extract and all were unable to induce hemorrhage or fibrinogen coagulation. Cnidarian extracts were able to neutralize clotting induced by Bothrops jararacussu snake venom, except M. alcicornis. All cnidarian extracts were able to inhibit hemorrhagic activity induced by Bothrops moojeni venom. Only the C. gigantea (body wall) inhibited thrombin-induced coagulation. All cnidarian extracts showed antitumor effect against Jurkat cells, of which C. gigantea (body wall) and S. helianthus were the most active; however, only C. gigantea (body wall) and M. alcicornis were active against B16F10 cells...


Asunto(s)
Animales , Bioprospección , Ensayos de Selección de Medicamentos Antitumorales , Venenos de Cnidarios/farmacología , Cnidarios , Región del Caribe
13.
Basic Clin Pharmacol Toxicol, v.122, n.4, p.413-423, abr. 2018
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2397

RESUMEN

Snake venom phospholipases A(2) (PLA(2)s) are responsible for numerous pathophysiological effects in snakebites; however, their biochemical properties favour antimicrobial actions against different pathogens, thus constituting a true source of potential microbicidal agents. This study describes the isolation of a Lys49 PLA(2) homologue from Lachesis muta muta venom using two chromatographic steps: size exclusion and reverse phase. The protein showed a molecular mass of 13,889 Da and was devoid of phospholipase activity on an artificial substrate. The primary structure made it possible to identify an unpublished protein from L. m. muta venom, named LmutTX, that presented high identity with other Lys49 PLA(2)s from bothropic venoms. Synthetic peptides designed from LmutTX were evaluated for their cytotoxic and antimicrobial activities. LmutTX was cytotoxic against C2C12 myotubes at concentrations of at least 200 g/mL, whereas the peptides showed a low cytolytic effect. LmutTX showed antibacterial activity against Gram-positive and Gram-negative bacteria; however, S. aureusATCC 29213 and MRSA strains were more sensitive to the toxin's action. Synthetic peptides were tested on S. aureus, MRSA and P. aeruginosaATCC 27853 strains, showing promising results. This study describes for the first time the isolation of a Lys49 PLA(2) from Lachesis snake venom and shows that peptides from specific regions of the sequence may constitute new sources of molecules with biotechnological potential.

14.
Basic Clin Pharmacol Toxicol ; 122(4): 413-423, 2018.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14875

RESUMEN

Snake venom phospholipases A(2) (PLA(2)s) are responsible for numerous pathophysiological effects in snakebites; however, their biochemical properties favour antimicrobial actions against different pathogens, thus constituting a true source of potential microbicidal agents. This study describes the isolation of a Lys49 PLA(2) homologue from Lachesis muta muta venom using two chromatographic steps: size exclusion and reverse phase. The protein showed a molecular mass of 13,889 Da and was devoid of phospholipase activity on an artificial substrate. The primary structure made it possible to identify an unpublished protein from L. m. muta venom, named LmutTX, that presented high identity with other Lys49 PLA(2)s from bothropic venoms. Synthetic peptides designed from LmutTX were evaluated for their cytotoxic and antimicrobial activities. LmutTX was cytotoxic against C2C12 myotubes at concentrations of at least 200 g/mL, whereas the peptides showed a low cytolytic effect. LmutTX showed antibacterial activity against Gram-positive and Gram-negative bacteria; however, S. aureusATCC 29213 and MRSA strains were more sensitive to the toxin's action. Synthetic peptides were tested on S. aureus, MRSA and P. aeruginosaATCC 27853 strains, showing promising results. This study describes for the first time the isolation of a Lys49 PLA(2) from Lachesis snake venom and shows that peptides from specific regions of the sequence may constitute new sources of molecules with biotechnological potential.

15.
Artículo en Inglés | LILACS | ID: biblio-894164

RESUMEN

Wasp venoms constitute a molecular reservoir of new pharmacological substances such as peptides and proteins, biological property holders, many of which are yet to be identified. Exploring these sources may lead to the discovery of molecules hitherto unknown. This study describes, for the first time in hymenopteran venoms, the identification of an enzymatically inactive phospholipase A2 (PLA2) from the venom of the social wasp Polybia occidentalis. Methods: P. occidentalis venom was fractioned by molecular exclusion and reverse phase chromatography. For the biochemical characterization of the protein, 1D and 2D SDS-PAGE were performed, along with phospholipase activity assays on synthetic substrates, MALDI-TOF mass spectrometry and sequencing by Edman degradation. Results: The protein, called PocTX, was isolated using two chromatographic steps. Based on the phospholipase activity assay, electrophoresis and mass spectrometry, the protein presented a high degree of purity, with a mass of 13,896. 47 Da and a basic pI. After sequencing by the Edman degradation method, it was found that the protein showed a high identity with snake venom PLA2 homologues. Conclusion: This is the first report of an enzymatically inactive PLA2 isolated from wasp venom, similar to snake PLA2 homologues.(AU)


Asunto(s)
Animales , Avispas , Receptores de Fosfolipasa A2/aislamiento & purificación , Receptores de Fosfolipasa A2/química , Intoxicación , Espectrometría de Masas/métodos , Receptores de Fosfolipasa A2/química , Cromatografía de Fase Inversa/métodos
16.
J. venom. anim. toxins incl. trop. dis ; 24: 22, 2018. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-954854

RESUMEN

Cnidarians produce toxins, which are composed of different polypeptides that induce pharmacological effects of biotechnological interest, such as antitumor, antiophidic and anti-clotting activities. This study aimed to evaluate toxicological activities and potential as antitumor and antiophidic agents contained in total extracts from five cnidarians: Millepora alcicornis, Stichodactyla helianthus, Plexaura homomalla, Bartholomea annulata and Condylactis gigantea (total and body wall). Methods: The cnidarian extracts were evaluated by electrophoresis and for their phospholipase, proteolytic, hemorrhagic, coagulant, fibrinogenolytic, neuromuscular blocking, muscle-damaging, edema-inducing and cytotoxic activities. Results: All cnidarian extracts showed indirect hemolytic activity, but only S. helianthus induced direct hemolysis and neurotoxic effect. However, the hydrolysis of NBD-PC, a PLA2 substrate, was presented only by the C gigantea (body wall) and S. helianthus. The extracts from P. homomalla and S. helianthus induced edema, while only C gigantea and S. helianthus showed intensified myotoxic activity. The proteolytic activity upon casein and fibrinogen was presented mainly by B. annulata extract and all were unable to induce hemorrhage or fibrinogen coagulation. Cnidarian extracts were able to neutralize clotting induced by Bothrops jararacussu snake venom, except M. alcicornis. All cnidarian extracts were able to inhibit hemorrhagic activity induced by Bothrops moojeni venom. Only the C. gigantea (body wall) inhibited thrombin-induced coagulation. All cnidarian extracts showed antitumor effect against Jurkat cells, of which C. gigantea (body wall) and S. helianthus were the most active; however, only C. gigantea (body wall) and M. alcicornis were active against B16F10 cells. Conclusion: The cnidarian extracts analyzed showed relevant in vitro inhibitory potential over the activities induced by Bothrops venoms; these results may contribute to elucidate the possible mechanisms of interaction between cnidarian extracts and snake venoms.(AU)


Asunto(s)
Animales , Masculino , Ratas , Antivenenos/toxicidad , Venenos de Cnidarios/farmacología , Venenos de Crotálidos/inmunología , Bothrops , Neoplasias/inmunología
17.
Toxicon ; 115: 13-21, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26927324

RESUMEN

Snake venom is a complex mixture of active compounds consisting of 80-90% proteins and peptides that exhibit a variety of biological actions that are not completely clarified or identified. Of these, phospholipase A2 is one of the molecules that has shown great biotechnological potential. The objectives of this study were to isolate, biochemically and biologically characterize a Lys49 phospholipase A2 homologue from the venom of Bothrops neuwiedi urutu. The protein was purified after two chromatographic steps, anion exchange and reverse phase. The purity and relative molecular mass were assessed by SDS-PAGE, observing a molecular weight typical of PLA2s, subsequently confirmed by mass spectrometry obtaining a mass of 13,733 Da. As for phospholipase activity, the PLA2 proved to be enzymatically inactive. The analyses by Edman degradation and sequencing of the peptide fragments allowed for the identification of 108 amino acid residues; this sequence showed high identity with other phospholipases A2 from Bothrops snake venoms, and identified this molecule as a novel PLA2 isoform from B. neuwiedi urutu venom, called BnuTX-I. In murine models, both BnuTX-I as well as the venom induced edema and myotoxic responses. The cytotoxic effect of BnuTX-I in murine macrophages was observed at concentrations above 12 µg/mL. BnuTX-I also presented antimicrobial activity against gram-positive and negative bacterial strains, having the greatest inhibitory effect on Pseudomonas aeruginosa. The results allowed for the identification of a new myotoxin isoform with PLA2 structure with promising biotechnological applications.


Asunto(s)
Antibacterianos/farmacología , Bothrops/metabolismo , Venenos de Crotálidos/química , Fosfolipasas A2/farmacología , Secuencia de Aminoácidos , Animales , Antibacterianos/química , Supervivencia Celular/efectos de los fármacos , Venenos de Crotálidos/aislamiento & purificación , Venenos de Crotálidos/farmacología , Edema/sangre , Edema/inducido químicamente , Edema/patología , Electroforesis en Gel de Poliacrilamida , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Interleucina-1beta/sangre , Masculino , Ratones , Fosfolipasas A2/química , Conformación Proteica , Pseudomonas aeruginosa/efectos de los fármacos , Alineación de Secuencia , Factor de Necrosis Tumoral alfa/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...